A Proposal for Generic Types in Go

by: Kyle Lemons
November 12, 2011

Contents

1 Introduction
1.1 Philosophy e e
1.2 Overview

2 Generic Type Usage

2.1 Pure Generic Types o e
2.2 Hybrid Generic Types o
2.3 Generic Functions
2.4 Generic Interfaces L

3 Advantages
3.1 Simplicity and Orthogonality
3.2 Implementations e

4 Drawbacks

4.1 Compilation

4.2 Execution e
Listings

1 Basic example of generic types Lo

2 Usage of basic generic types L

3 Equaler interface.

1 Introduction

I have been using Go now for over a year. I think that through this time, I have gotten a pretty good
feel for the language as a whole and the principles that guide it. There have been very few times where
I have even been tempted to look for generic types while writing actual programs, but for some things
(like the math package), there is clearly no good solution yet within the confines of the language. The
creators of Go have acknowledged that they will consider adding generic types to the language if they
find the right way to go about it, so here is my humble attempt at defining what generic types could
look like within Go.

1.1 Philosophy

In designing this proposal for generic types, there are a few fundamental principles which have guided
my hand. I have discussed various generic type proposals with other members of the community who
have other design goals in mind, so I think it’s probably a good idea to state these up front.

e Generic types should be simple.

e Generic types should not add any new syntax to the language.

e Generic types should not incur much, if any, run-time overhead.

e It should be possible to use a generic value as a map key or slice index.

e Generic types should not require the programmer to explicitly parameterize the Generic types (as
templates in C++).

e Generic types should not require importing a package multiple times for multiple, different instances
of the generic construct in question.

1.2 Overview

This proposal for generic types adds a single keyword to the language: generic. The keyword can be
used in a type definition, in place of an interface or structure type. For a basic example of a package
with generic types, consider a fictitious package gen, shown in Listing 1.

To demonstrate the simplicity of the generic types in this proposal, consider the short (but contrived)
program in Listing 2 to sum up command-line arguments.

This code could be entirely permissable with generic types, because the compiler specializes gen. Tern
and gen.Check for Value as type string and specializes gen.ReduceFunc for Value, Result
as string, int during code generation. This could be done in a similar fashion to the way in which
the C++ compiler would create a string version of the function for gen::Tern<string>, except
with inferences for each generic type involved.

Compare this example to a scenario in which Value was an interface of some kind: no type
assertions or run-time overhead is incurred, and the type safety of the code is guaranteed at compile
time. If Value was an interface, the compiler would have no way of ensuring that the two types given
to gen.Tern were the same type, and would not be able to know that adding a string to the result
of the function call was acceptable. With the interface, these checks would either have the potential
to panic or require extra boilerplate to check at run-time.

Listing 1: Basic example of generic types

1 // Package gen provides some example generic functionality.
package gen

2

3

4 // Generic types for this package

5 type Value generic

6 type Result generic

7 type ReduceFunc func(Result, Value) Result
8
9

// Tern is the ternary operator: Tern(cond,t,f) == (cond?t:f)
10 func Tern (cond bool, t, f Value) Value {
11 if cond {
12 return t
13 }
14 return f

17 // Reduce returns the result of running the ReduceFunc on each successive value
18 // in list along with the last result.

19 func (red ReduceFunc) Reduce (r0 Result, list ...Value) Result {
20 for _, v := range list {

21 r0 = red(r0, v)

22 }

23 return r0

24 }

26 // Check strips out the os.Error return from a function call for use inline.
27 func Check (val Value, err os.Error) Value {

28 if err != nil {
29 panic(err)

30 }

31 return val

32 }

Listing 2: Usage of basic generic types

1 package main

2
3 import (
4

"fmt"
5 "gen"
6 "strconv"
7))
8
o func main() {
10 add := gen.ReduceFunc (func(x0 int, x1 string) int {
11 return x0 + gen.Check (strconv.Atoi (x1))
12 })
13
14 nums := 0s.Args[l:]
15 fmt .Printf ("Sum of your %s: %v\n",
16 "number" + gen.Tern(len(nums)==1, "", "s"),
17 add.Reduce (0, os.Args))

18}

2 Generic Type Usage

In each of the following sections, I will attempt to do the following:
e Give an example of the usage of generic types in that context
e Explain when generic types can and cannot be used in that context

e Give a possible method for compiler/linker implementation of that application

2.1 Pure Generic Types

We have already seen an example of pure generic types: on Listing 1:5-6. Any named type whose
underlying type has been specified with the generic keyword is a “generic type.”

When the compiler finds a pure generic type, it will track this type in a much different way from other
types. When the type is used as a part of another definition, it will not fully compile that entity and will
instead store something similar to the parse tree of that construct, along with a set of restrictions about
how the value was used (e.g. whether the value of the generic type was used as a slice index or map
key, whether the value was casted, whether the value had any basic operators used and the type of the
other operand, etc). This parse tree could be processed to some degree without specializing the types,
but would probably need to be stored in the object files with very little obfuscation. Because of this
restriction, it would be difficult to hide the implementation of a generic construction from the consumer
of a library.

When the compiler is performing type checks and encounters a generic type (e.g. on Listing 2:11 when
type-checking gen . Check), it will validate the inferred type against these restrictions before specializing
a new instance of the function, interface, etc. It will collect the apparent types of all values necessary to
specialize the type, and then ensure that all instances of a particular generic type have identical concrete
types. Like the rest of Go, no implicit type conversion will happen.

2.2 Hybrid Generic Types

As with pure generic types, we have already seen an example of hybrid generic types: on Listing 1 line
7. In my (admittedly arbitrary) terminology, a hybrid generic type is a normal Go type (an interface, a
function, a struct) which cannot be completely described without filling in the concrete type of one or
more generic type.

At a very basic level, the code for an entire hybrid type (including all of its methods and conversions)
can be specialized at the time in which a value of that type is declared. Values and variables specialized
from a generic type should probably not maintain an annotation about the generic type from which they
were specialized, as passing a value specialized with one generic type as a value of a different generic type
with the same requirements seems sensible. This may weaken the strict typing of Go, though, especially
when reading through code and eyeballing variable types, and so may not be a good idea if generic types
and user-defined types are intermixed.

2.3 Generic Functions

Generic functions would behave the way I think we would all expect them to. At the call-site, the
concrete types of each generic argument with the same type must match, and then the return types must
match. I suspect that there will have to be a requirement that any generic type used in a return value
must also be used in an argument, but it would be really cool if this wasn’t the case.

One really nice aspect of Go is that every type has a well-defined zero value (though it may not be
properly initialized), so it is possible to instantiate values of a generic type within the value of a function.
I suspect that there will also have to be a requirement that all generic types in the function will have to
also be used in the argument list.

Calling a function with generic arguments within a generic function should be possible. In general,
it will cascade any requirements of the inner function’s generic type outward. In some cases it may be
possible to identify when one generic type cannot be passed as a value of another—for instance, if a
generic value is indexed in the inner function and operated on with an arithmetic operator in the outer
function or another inner function.

2.4 Generic Interfaces

Generic interfaces behave the way I think would be expected. It will probably incur a runtime penalty
higher than that of a normal interface, however, for things like type switches and type assertions, due
to the extra requirements (assignability, convertability, indexing, mathematical operations) attached to
the various generic types in addition to requiring that the concrete types all match. It should, however,
enable things like the coveted Equaler interface as in Listing 3.

Listing 3: Equaler interface.

1 type Value generic

2 type Equaler interface {
3 Equals (other Value) bool

4}

5

6 // Search returns the index of the first element for which list[idx].Equals(val)
7 // returns true, or -1 if no matches are found.

s func Search(list []Equaler, wval Value) int {
9 for i, v := range list {

10 if v.Equals(val) {

11 return i

12 }

13 }

14 return -1

15 }

16

17 // SliceEqual returns true if all elements of a and b are Equal according to the
18 // Equals () method of the slice value type.

19 func SliceEqual(a, b []Equaler) bool ({

20 if len(a) != len(b) {
21 return false

22 }

23 for i, v := range a {
24 if !v.Equals(b[i]) {
25 return false

26 }

27 }

28 return true

29 }

30

31 // Integer implements Equaler.

32 type Integer int

33 func (i1 Integer) Equals(j Integer) bool ({
34 return i == j

35 }

36

37 // Compile—-time check.

38 var _ Equaler = Integer (0)

3 Advantages

3.1 Simplicity and Orthogonality

I think this is one of the simpler generic type proposals possible. It does not change the semantics of any
code, and only adds a single keyword. I believe that it is orthogonal enough to the type system that it
wouldn’t require much, if any, discussion in the specifications beyond a section describing generic types.

In other words, I don’t think detailed discussions about the interaction with functions, interfaces, etc.
would need to be discussed in their respective sections.

3.2 Implementations

This proposal has the advantage that the implementation suggested above isn’t the only possible imple-
mentation. In rereading it, it could also be implemented by replacing all generics with interfaces and
surrounding them with runtime type checks, or at runtime in an interpreter. The semantics are simple
enough that the implementation itself could be done in any number of ways.

4 Drawbacks

4.1 Compilation

This proposal definitely incurs a compile-time penalty, and will increase object sizes. It also has the
potential to create many specializations of generic functions without the programmer noticing, which
will increase binary sizes. It will probably be quite difficult to combine identical specializations of the
same generic entity when they are included in a binary through separate objects. As mentioned earlier, it
also reduces the opacity of object files in general, as generic entities would be relatively easy to scrutinize
and replicate.

4.2 Execution

The execution penalty of the specializations would be no higher than the equivalent non-generic entity,
but compared to a reflection- or run-time-specialized generic approach could potentially perform worse
(due to caching) if the number of specializations of an entity is high.

	Introduction
	Philosophy
	Overview

	Generic Type Usage
	Pure Generic Types
	Hybrid Generic Types
	Generic Functions
	Generic Interfaces

	Advantages
	Simplicity and Orthogonality
	Implementations

	Drawbacks
	Compilation
	Execution

