
More Than You Ever Wanted to Know About

Pointers

Kyle Lemons

March 15, 2007

Contents

1 Introduction 2

2 The Basics 2
2.1 What Is a Pointer? . 2
2.2 Why Use a Pointer? . 3
2.3 Compiler Speak: Syntax . 4

3 Using Pointers 6
3.1 What’s Behind Door #3: Dereferencing a Pointer 6
3.2 Where are you? The Address-Of Operator 7
3.3 I Swear It’s Really A Pointer: Arrays 8
3.4 Fun With Strings (C-style) . 9
3.5 A Walk in the Park: Traversing Arrays and Strings 10

4 Advanced Usage 12
4.1 Here We Go Again: Arrays of Strings 12
4.2 Kill Me Now: Multidimensional Arrays 14

4.2.1 Example of multidimensional pointers and string handling 16
4.3 Pointers to Nowhere: Handles . 17
4.4 Back to Kindergarten: Pointer Arithmetic 17
4.5 Data, Data Everywhere: Pointers to Structs 17

5 Memory Management 17
5.1 The usual suspects: malloc and free 17
5.2 Even More Fun With Strings: String Functions 18
5.3 Array Management: calloc, realloc, and the mem* Family . . . 18

1

1 Introduction

This article is written at the request of the Fall 2006 CS1372 class at the Georgia
Institute of Technology. The purpose of this document is to supplement the
readings and to assist in the understanding of pointers. The motivation behind
it is that pointers are such an integral part of and a large component of the
power behind programming in C and C++ that not understanding them would
cripple the student in the course and impede their effectiveness as a programmer.
This document will cover pointers from the very most basic concepts up to the
most advanced usage that the author can come up with, with the hope that the
reader will work slowly through it to understand each concept before moving
on to more difficult ones.

All code examples contained in this document should work in any standards-
compliant C or C++ compiler. At the moment, the author does not intend to
cover the new and delete C++ operators, so most of the text should apply
equally to C and C++.

2 The Basics

2.1 What Is a Pointer?

At its most basic, a pointer is just a number. In fact, pointers are really just
unsigned integers. In most operating systems (32-bit) a pointer is 32 bits
wide. Not coincidentally, this is the same size as an unsigned integer. In fact,
as you can see in the example below1, you can print out a pointer using printf
and it can look exactly like an integer. Note, however, that there are also special
format specifiers which can print out pointers in a more useful manner (%p, %x
and %X). Granted, they are very large integers, but they are integers just the
same. Understand that this is a contrived example and is not very useful, so
don’t go using character pointers for math instead of integers..

char *a = "This is a test,";
char *b = "This is only a test.";
printf("a = %d,\tb = %d\n", a, b); // See, they’re only numbers.
printf("a is %p,\tb is 0x%X\n", a, b); // Useful for debugging!
// %p - Print as a pointer. Automatically includes 0x
// %x - print in hexadecimal, %X capitalizes the hex letters
/* Example Output:
a = 4196956, b = 4196972
a is 0x400a5c, b is 0x400A6C

*/

Now that you know what a pointer is, you need to know what a pointer
means. You can get some idea of this by looking at the word “pointer.” A

1The syntax will be covered later. Assume for now that a and b are pointers to a character.

2

pointer “points to” something in memory. A pointer is a number that repre-
sents where in your computer’s memory where the aforementioned something
resides. This number called an address. Within memory, each byte (set of 8
bits) has a unique address. This memory address can be thought of like your
Georgia Tech P.O. Box number. How do you find your post office box? First,
assuming the first two numbers are 33, you ignore them. Then you take the
next number and you look for the hall of P.O. boxes with that number. The
next number represents which block of P.O. boxes your box is in, and the last
two numbers represent which row and column, respectively. In the same way,
memory addresses represent an exact place in memory. It is not necessary to
understand exactly how memory is organized, but if you look at the above ex-
ample, you will notice that both of the addresses (in hex) have almost identical
addresses. The only difference is the second to last character. In a 32-bit op-
erating system, pointers are 32 bits wide2. This is also the width of the stack
(the thing that passes data back and forth between function calls). This is not a
coincidence, and one reason that it is done that way is to facilitate easy transfer
of pointers between functions. See section 4.3 on handles to see how you can
prove to yourself that pointers are, indeed, 32 bits wide.

The take-home message here is simple. A pointer is a number. Almost
every error that is made with pointers stems from the programmer forgetting
that their pointer is actually a number. If you want your pointer to be anything
other than a number (say, a character, a string, an array) you have to treat it
differently.

2.2 Why Use a Pointer?

As was mentioned in section 2.1, a pointer is a number. What good does this
do us? Well, let’s take a fairly common example in computer programming.
Let’s say that you are writing a program to analyze the data that your biology
professor collected in her latest research experiment. You have upwards of
ten thousand data points, each one with double floating-point precision. That
could be more than 80 MB of data, which you read into memory so that you
can manipulate it more easily. If you have different routines for performing
operations on the data, for instance to sort it, find a good polynomial fit, do
error analysis, and to rewrite the data in a new format, you will want to get
the data into that routine somehow. If you recall, when data gets passed to
functions in C and C++3, it is passed by value. This means that a copy of
the data is pushed onto the stack every time you need to pass that data into a
function. I’m sure you see that you could quickly use up your memory if you
are pushing 80MB of data all over the place on the stack. This is where pointers
come in. In C and C++, an array is really a pointer (see section 3.3), so if you

2This document will assume that you are using a 32-bit operating system. a 64-bit oper-
ating system will, obviously, have 64-bit pointers. If you are using such an operating system
with a compiler which can compile natively for it, substitute 64-bits where appropriate.

3Actually, C++ can pass arguments by reference, but this is beyond the scope of this
article.

3

store the data in an array and pass a pointer to the data into the function, only
32 bits must be pushed onto the stack.

2.3 Compiler Speak: Syntax

Declaring a pointer is easy. Nothing, however, can substitute for examples.

1. char *a; // creates a pointer. This pointer is designed to point to data
of the character type.

2. int *b; // creates a pointer. This pointer is designed to point to data
of the integer type.

3. double *data; // creates a pointer. This pointer is designed to point to
data of the double-precision floating-point type.

4. const char *c; // creates a pointer. This pointer is designed to point
to data of the character type, but the data may not be modified. const
is short for “constant”

5. const char *d = "test"; // creates a pointer. This pointer points to
data of the character type, the data may not be modified, and the memory
is already allocated.

• Whenever you use a pointer to string constant (a double quoted
string), be aware that the string is in read only memory. If you
want to avoid program crashes (called segmentation faults) caused
by attempting to modify these strings, always use a const char *
with them.

• See section 3.4 for a more detailed explanation on strings.

6. a = d; // Error

• Notice that in this example, the programmer is assigning the value
of a const char * to a char *. This is not allowed.

• Modifying the contents of the memory at d is not allowed, because d
is declared const. Storing this value into a non-const pointer would
allow the data to be modified.

• Notice, however, that it is permissible to assign a non-const pointer
value to a const pointer. This would still not allow the contents of
the memory location pointed to by the const pointer (via the const
pointer).

7. b = d; // Because pointers are, at the very lowest level, numbers, b and
d now hold the same address. This means that they both point to the
same data.

4

8. char e[] = "Everybody hates exceptions"; // Creates a pointer to
an array of characters. The memory for this array is allocated automati-
cally.

• Note that when you assign a string constant (double quoted string)
to an array, the value of the string is copied into the array, so it can
be modified (unlike constant strings pointed to by a char *).

• Note also that this is still a char *, and can be used as one in pointer
arithmetic, assignment statements, and function calls.

• See section 3.4 for a more detailed explanation on string arrays.

9. a = e; // As is the case with “b = d;” above, a now points to the same
string as e. However, it is permissible to modify the contents of e through
a.

10. char f = *d; // f is a character, and in this example, will contain the
value ‘t’.

• Notice the different usage of the asterisk (*) in this example.

• *d does not create a pointer in this case, it dereferences one. This
takes the value of the data pointed to by d, which is a character.

• See section 3.1 for a more detailed explanation of dereferencing point-
ers.

11. char *g = &f; // g is a pointer which holds the address of f.

• See section 3.2 for a more detailed explanation of the address-of op-
erator.

12. double vector[10]; // vector is a pointer to a memory block big enough
to hold 10 double-precision floating-point numbers

13. double matrix[10][10]; // matrix is a pointer to a memory block big
enough to hold 100 double-precision floating-point numbers

• The above comment states that it points to a block of memory large
enough to hold 100 double-precision floating-point numbers. This
may not actually be the case. Strictly speaking, matrix points to
a contiguous block of pointers to contiguous blocks of 10 doubles,
and this is exactly how it is treated. Because the compiler knows all
of the dimensions of this matrix, it can optimize by doing what the
comment suggests, by turning this into a single-dimension array and
computing the indices based on the known dimensions. Most new
compilers will do this for you, but it is not wise to write your code
to make this assumption.

• For a more in-depth discussion of multidimensional arrays, see the
advanced pointer usage in section 4

5

3 Using Pointers

3.1 What’s Behind Door #3: Dereferencing a Pointer

Creating pointers is important, and understanding the different kinds of pointers
is essential, but quite possibly the most important thing to understand about
pointers is how to access the data that they point to. This is called dereferencing
the pointer, and is denoted in C and C++ by prefixing the name of the pointer
with an asterisk. The pointer dereference operator is often read “the value at,”
or “the value pointed to by.” When you dereference a pointer, the compiler
looks at the number that is stored in the pointer, finds that location in memory,
and uses what it finds there. Recall that all pointers are the same size. Even
though a char is one byte and a double is 8, both kinds of pointers are the same
size. The difference between the two is only ever known to the compiler (not
to the computer when the application is running). The two pointers themselves
are identical in memory. When you dereference a char *, the result is a char.
When you dereference an int *, the result is an int. When you dereference
a double *, the result is a double. It is conceivable that there could be one
pointer of each of these types which all point to the exact same memory address.
When dereferencing each of these pointers, the memory itself will be interpreted
as the data type in question, no casting will occur.

As an example, let us consider an int * which points to the same memory
address as a char *. You dereference the character pointer and set the value
to ASCII ‘A’. You then print out the dereferenced int *. The printed value
will not be the same as it would be if you printed out the value of ASCII ‘A’
casted to an int, but will be the value of the 4-byte quantity pointed to by the
int *. Only one of these bytes will have been changed with the assignment to
the char *. The code for this example is included below. See section 3.2 for
the meaning of &victim.

int victim = 65535;
printf("victim = %d\n", victim);
int *p = &victim; // Pointer to victim
char *q = (char *) &victim; // Pointer to victim
*q = ‘A’; // assign the byte at q to ‘A’ (97)
printf("*p = %d\t(%p)\n", *p, p);
printf("*q = %c\t(%p)\n", *q, q);
/* Example output:
victim = 65535
*p = 65345 (0x7fffc6ba26d4)
*q = A (0x7fffc6ba26d4)

*/

It is possible to create pointers to pointers, which when dereferenced result
in a pointer, which can then be dereferenced again to get the data. This tech-
nique is used to create multidimensional arrays and to create handles, which are
discussed later in sections 4.2 and 4.3 respectively.

6

3.2 Where are you? The Address-Of Operator

The final key syntactical and strategical point in pointers is how to make a given
pointer point to a certain memory location. In the above examples, you have
seen how to define pointers, how to assign to pointers, and have even seen a few
examples of pointers to strings. The address-of operator is the ampersand (&),
is used to prefix the variable whose address is needed, and is read “address of.”
The address-of operator prefixes a variable name and the result is the memory
address of the data that that variable is storing. The address-of operator can
be used with any variable, and the data type of the result is a pointer to the
data type of the variable in question. For instance, if there is a double width
= 48.25;, then &width would be a double *, and can be assigned to a variable
of that type. As you saw in the example in 3.1, it is possible to cast from one
pointer type to another.

Sometimes, the programmer needs to use a variable as a pointer to a different
type. As stated above, the address-of operator always results in a pointer to the
same type of data as the variable in question. For circumstances like this, just
like any other variable, a pointer can be casted. Pointer casting makes sense in
general because all pointers are the same size, and all they really represent is a
location in memory. Casting a pointer from one type to another does not modify
its value, it simply lets the compiler know that the programmer knows what he
is doing, and can therefore be allowed to use the pointer as the alternate type.
Any pointer type can be converted into any other; it is up to the programmer
to make sure that the pointer is still meaningful after the cast. When a general,
data-type-in-specific pointer is needed (for instance, for memory allocation and
deallocation) a void * is used. As you can see, pointers are infinitely flexible
and with the right casts and forethought, a pointer can be made to do just
about anything. Herein lies the greatest source of the power and flexibility of
C and C++, but also the greatest danger.

In the following example, pointers are created and used with various typical
data types. The concept of output parameters is also introduced. An output
parameter is a parameter which does not pass a value into a function, but
is intended to store a value computed by a function. Output parameters are
accomplished with pointers as shown below.

/* height - INPUT Height of the rectangle (height >= 0) *
* width - INPUT Width of the rectangle (width >= 0) *
* *diag - OUTPUT Diagonal of the rectangle (diag != NULL) *
* *area - OUTPUT Area of the rectangle (area != NULL) */
void rectstats(int height, int width, double *diag, double *area)
{
if (diag && height >= 0 && width >= 0)
*diag = sqrt(height*height + width*width);

if (area && height >= 0 && width >= 0)
*area = height*width;

}

7

int height = 10;
int width = 20;
double diagonal;
double area;

rectstats(height, width, &diagonal, &area);
printf("Rectangle:\n");
printf(" Height: %d\n", height);
printf(" Width: %d\n", width);
printf(" Diagonal: %f\n", diagonal);
printf(" Area: %f\n", area);

/* Example output:
Rectangle:
Height: 10
Width: 20
Diagonal: 22.360680
Area: 200.000000

*/

3.3 I Swear It’s Really A Pointer: Arrays

As the title of this section suggests, when you use an array, you are really using
a pointer. This section might get fairly in-depth, so feel free to skip over the
more technical parts. Don’t forget to come back to it, however, if you get lost
in array traversal (section 3.5) or multidimensional arrays (section 4.2).

First, let us consider a simple array declaration.

int array[100];

What this does under the covers is, in essence, very simple, and the compiler gen-
erates the code necessary to do all of this without the programmer’s knowledge.
A block of memory large enough for 100 integers is allocated, and a pointer
to this memory is stored. As you may have guessed, array is the pointer in
question, and as such is really an int *. Now, let us consider the standard
method of accessing the contents of an array:

array[27] = 63;

Conceptually, this sets the 27th element of the array array to 63. In pointer
speak, however, the above code is actually treated identically to the following:

*(array+27) = 63;

Notice the use of pointer arithmetic (see section 3.5) to set the value of the 27th
element. For a more in-depth look at how to iterate through arrays, see section
3.5

Arrays are quite possibly the most common use of pointers, and array access
and manipulation would not be possible without pointers. Almost any array

8

problem beyond the very basic ones can be accomplished with pointers, often
more legibly and more efficiently. As we will see later, often problems which
might not appear to involve arrays or pointers–notably, strings–can generalize
very nicely into pointer-based implementations.

3.4 Fun With Strings (C-style)

Consider the following definition of three standard C-style strings:

const char *cstr = "This string is very typical.";
char *str = strdup("This string is very typical.");
char sarr[] = "This string is very typical.";

As you can see, each of the above definitions is slightly different, however
they would each look identical if printed via printf. Each of the above declara-
tions is slightly different. In the following paragraphs, we will explore each one
individually. It is important to remember throughout this section and whenever
you are working with strings that, by definition, a C-type string is terminated
by a NULL byte (‘\0’).

The string cstr is stored in read-only memory, and so is declared as a
const char * so that the compiler will generate compile-time warnings if we
violate this. This string may not be changed, cannot be appended to, tokenized,
or manipulated in any way. It is, for all intents and purposes, untouchable.
It is also interesting to note that two different strings defined in such a way
with identical strings will both have the same address in read-only memory!
This might seem unexpected, but it makes sense from a memory consumption
standpoint. If there is no way that the string will be modified, then there is no
danger in having two pointers point to it.

The string str is a duplicate of the read-only version which was passed
to strdup (see section 5.2). The memory location occupied by this string is
exactly the length of the string including the NULL terminating byte, so we are
free to modify, tokenize, rearrange, and otherwise alter this string–as long as we
stay within these bounds. Appending to this string would require allocation or
reallocation of memory in order to accommodate the added length. This pointer
can be incremented, decremented, and reassigned, but none of this changes that
this block of memory was allocated dynamically and therefore must be freed.
It would be in your best interest to always use a separate pointer to iterate
through a dynamically allocated memory block, as this facilitates freeing the
memory much more easily.

The string sarr is a contiguous block of read-write memory exactly long
enough to hold the string and its NULL terminating byte. This memory is not
dynamically allocated, and therefore must not be explicitly freed. This means,
however, that it is often difficult to append data to a string like this. It is
possible to specify a length in the brackets when defining this string, and so
expanding the pre-allocated area into which this string can expand. Strings like
this can be modified, tokenized, reorganized, zeroed, and rewritten, and as long
as the bounds are respected the memory will be reclaimed automatically when

9

the variable goes out of scope. Remember, however, that the size of this block
of memory is determined at compile time.

We also mustn’t forget to free our strcpy’d string (see 5.1), as it was
malloc’d implicitly (see section 5.2):

free(str);

3.5 A Walk in the Park: Traversing Arrays and Strings

As was stated in section 3.3, the following two statements are identical:

array[27] = 63;
*(array+27) = 63;

To hammer this equivalence point home further, consider the following two lines
of code, which are again each identical to the two above examples:

*(27+array) = 63;
27[array] = 63;

In addition to the immobile pointer array used in all examples above, there
are a few other ways to access the elements of arrays. Chief among these is
access via a separate pointer. First, let us define and initialize such a pointer.

int *ap; // _a_rray _p_ointer
ap = array;

Recall that array is really just a int *, and so it contains an address. Assigning
ap to this value essentially duplicates this pointer, so now ap “points” to the
beginning of the array just like array does. The same array access idioms work
here as well:

ap[26] = 27[ap] + *(ap+27);

The benefit that we gain from using a pointer to access the array comes from
the mobility of such a pointer. For instance, iterating through an array can be
done in any one of a number of ways, three of which are included here:

for (int i = 0; i < 100; ++i)
array[i] = 0; // <=> // i[array] = 0; // <=> // *(array+i) = 0;

for (int i = 0; i < 100; ++i)
ap[i] = 0; // <=> // i[ap] = 0; // <=> // *(ap+i) = 0;

for (ap = array; ap - array < 100; ++ap)
*ap = 0;

ap = array; // set ap back to where it was

Again, for the pointer arithmetic used above, see section . All three of the
methods of iterating through the array accomplish the same thing, but they
each have their own unique strengths. The first is the most common when
initializing an array for the first time. The second is very useful for initializing

10

a section of an array, where ap points to the beginning of the section and the
length is 100. The third is useful in any number of situations, and the for
condition could easily be changed to fit the situation. One more specialized
form of the third would be for clearing a memory section between two pointers,
in which case the conditional would be ap < endptr.

While all of the above examples can also apply to strings, there are some
special (and very useful) ways of dealing with strings. Take a look at the fol-
lowing example, and note how the special characteristics of strings and pointers
are used to make the code shorter and more legible.

char buf[100] = "This is not a test. I repeat, this is NOT a test!";
char *c, *s;
c = s = buf;
int word = 0;
do
{
if (*c == ’ ’ || *c == NULL)
{
printf("Word #%d is:\t\"", ++word); // print tag
for (const char *x = s; x < c; ++x) // print letters in word
printf("%c", *x); // one character at a time

printf("\"\n"); // print the end of line
while (*c && *c == ’ ’) ++c; // skip spaces
s = c; // store new start position

} // word completed
} while (*c++); // stop when we just finished examining NULL

/* Example Output:
Word #1 is: "This"
...
Word #5 is: "test."
Word #6 is: "I"
...
Word #11 is: "a"
Word #12 is: "test!"

*/

The key things to note in this example is how *c and others were used to easily
determine if the end of string had been reached. This is made possible by the
fact that the NULL byte (zero, in fact) evaluates to false in a Boolean context.
This is used in conjunction with the post-increment to simplify the do ...
while conditional (which is used in favor of a while or for to enable the loop to
still operate on the NULL byte at the end just like it would on a normal space:
as the end of a word) and still stop when the loop would overrun the bounds of
the string. The numeric nature of pointers is used in the for loop to easily print
out only the characters that appear between the start pointer s and the current
pointer c, and a simple while loop is used to skip adjacent sequences of spaces so

11

as not to notice zero-length words. The above example is a very typical piece of
code for a programmer who is familiar with the nature of pointers and strings,
and shows how easily very complicated tasks can be accomplished with enough
thought and knowledge of pointers. Read through the example, look at the
comments, and try rewriting it from memory to help solidify the meanings and
concepts used above. Iteration using pointers is a very important and useful
skill in the C/C++ world.

4 Advanced Usage

4.1 Here We Go Again: Arrays of Strings

Arrays of Strings in C are actually not what they sound like they might be. They
are actually arrays of pointers to characters. To make life even more interesting,
the variable itself that represents the matrix is a pointer to a character pointer.
The first step in understanding how to manipulate these is understanding what
this means.

A pointer is always the same size. A pointer to a pointer is no exception.
Every pointer has a pointer type based on the type of data that it points to,
so in this case the pointer will be of type char**, because it is a pointer to a
character pointer. When one dereferences a pointer, the result is a value of the
pointer’s type, in this case char*. As we know, strings can be referenced by
a pointer pointing to the first character in the string, and this is exactly what
this value will be. In essence, this means that an array of strings is essentially a
pointer to a block of memory containing the addresses of the first characters of
the strings in question. Examine the following functions, which are equivalent:

void PrintStrFrom(char **strarray, unsigned int idx)
{
printf("strarray[%d] = %s\n", strarray[idx]);

}

void PrintStrFrom2(char **strarray, unsigned int idx)
{
printf("strarray[%d] = ", idx);
char *p = *(strarray+idx);
while (*p)
{
printf("%c", *p++);

}
printf("\n");

}

12

void PrintStrFrom3(char **strarray, unsigned int idx)
{
printf("strarray[%d] = ", idx);
int cidx = 0;
while (true)
{
char c = *(*(strarray+idx)+cidx);
if (c)
printf("%c", c);

else
break;

}
printf("\n");

}

char **strs; // = {"Testing", "One", "Two", "Three"};
strs = (char **)calloc(4, sizeof(char*));
strs[0] = strdup("Testing");
strs[1] = strdup("One");
strs[2] = strdup("Two");
strs[3] = strdup("Three");
PrintStrFrom(strs,1);
PrintStrFrom2(strs,2);
PrintStrFrom3(strs,3);
for (int i = 0; i < 4; ++i) free(strs[i]);

/* Example Output:
strarray[1] = One
strarray[2] = Two
strarray[3] = Three

*/

You will notice that in PrintStrFrom, the strings are accessed “as a whole”
through the array. This is by far the cleanest way to use the strings in the
array, but the other two methods show equivalent but messier ways which,
while bad examples of good code, are good examples of what’s really going
on behind the scenes. In PrintStrFrom2, a pointer is set to the beginning
of the string in question (notice the method of indexing strarray, and note
its equivalence to strarray[idx]), and then incremented as the characters are
printed out. Finally, in PrintStrFrom3, the string itself is indexed by character,
and the character to be printed is determined each time by calculation (notice
the method of indexing both strarray and the string, and note its equivalence
to strarray[idx][cidx]). The final section of code gives a little preview of
what’s to come with memory management and its application to arrays and
pointers. If you are unfamiliar with the memory allocation facilities of C, take
note of the comment at the instantiation of strs as a vague equivalent.

13

While arrays of strings are common and useful, the most interesting part of
using them is their implementation. Continue reading to see how it compares
to multidimensional arrays; if you understood this section well, you should find
multidimensional arrays to be only a very small step up on the difficulty scale.

4.2 Kill Me Now: Multidimensional Arrays

As you should know if you have read the preceding material, an array is a
block of memory. A multidimensional array is a special case of this concept. A
multidimensional array is a block of memory containing pointers to other arrays.
Before we delve into how they work, how to make them, and how to use them,
let’s look at some multidimensional array expressions. You might want to read
some of these interpretations more than once.

• int **mdarr1; Define a variable called mdarr which holds an address of
a block of memory which contains the address of an integer.

• int *mdarr2[10]; Define a variable called mdarr which represents a block
of memory containing ten pointers to integers.

• int mdarr3[10][]; Define a variable called mdarr which represents a
block of memory containing ten arrays of integers.

• int mdarr4[10][10]; Define a variable called mdarr which represents a
block of memory containing ten arrays of ten integers.

One thing that is very important to notice is the difference in wording of the
above descriptions. When a variable or array contains the address of a value
(integers in the above examples), it does not necessarily point to an array! It is
up to the programmer to know if it points to an array (that is, a block of values),
a single value, or no value at all (NULL pointer). Another very important thing
to note is the behavior of the last three examples above. If you noticed the
use of the word “represents” in the description, you were paying the requisite
amount of attention to detail to be able to understand the nuances of pointers...
If not, now is a good time to start. With the latter three examples above,
the compiler knows something important about the array (the size), and can
thus make optimizations (mdarr[10][10] is actually a single block of memory
itself, not a pointer to one, and the compiler optimizes your array indexing
to point within this block). For most coding purposes, these optimizations are
completely transparent to the programmer... however, in some situations they
are not.

Basically4, the point is is that a double pointer is fundamentally different5

from a 2D array allocated statically in that a 2D array is actually the same
thing as a 1D array. It is simply a linear block of data elements in memory.
This affects the pointer math a great deal. For example, say you have this:

4This explanation provided by David Worsham
5http://www.ibiblio.org/pub/languages/fortran/append-c.html - See section entitled

“Why a double pointer can’t be used as a 2D Array”

14

int arr[3][3] = {{3, 1, 1}, {1, 3, 1}, {1, 1, 3}};
int** ptr = (int**)arr; //This cast should be your first clue that
// a difference exists...arr is actually an int*!

printf("arr: %p\n", arr);
printf("ptr: %p\n", ptr);
// Check out the pointer math for this element...arr[x][y] is the same
// as *(arr + array_width * y + x)! The compiler remembers the array
// width at compile time and does this translation
printf("arr[0][0]: %i also %i\n", arr[0][0], *(arr + 3 * 0 + 0));
// This is the same as (arr + 3 * 0 + 0) cause’ of the &
printf("&arr[0][0]: %p\n", &arr[0][0]);
// This is equivalent to &(*(*(ptr + 0) + 0)) which becomes
// (*(ptr + 0) + 0) or just *ptr
printf("&ptr[0][0]: %i\n", &ptr[0][0]);

On my system this program output:

arr: 0x8F01C378
ptr: 0x8F01C378
arr[0][0]: 3 also 3
&arr[0][0]: 0x8F01C378
&ptr[0][0]: 3

So, 2D arrays still define the same linear data structure as 1D arrays but
double pointers define a hierarchical data structure. Thus, they are not the same
thing. Just remember: all arrays, regardless of dimension, are single pointers.

15

4.2.1 Example of multidimensional pointers and string handling

void split(char* tosplit, char* delim, char*** parsed, int* len)
{
char **list = NULL;
int tf = 0; // Token First index
int tl = 0; // Token Length
int tc = 0; // Token Count
char *c = tosplit; // current character
char *d = NULL; // delim pointer
char *temp = NULL; // temp string
while (c) // infinite loop and sanity check
{
d = my_strchr(delim, *c); // search delim for *c
if (d || *c == ’\0’) // if we’re at the end of a token
{
tl = int(c - tosplit) - tf; // calc length of token
temp = (char *)calloc(tl+1, sizeof(char));
strncpy(temp,tosplit+tf,tl+1);
temp[tl] = ’\0’; // null terminate
list = (char**)realloc(list, (tc+1) * sizeof(char*));
list[tc] = temp; // append to list
tf = int(c - tosplit) + 1;
++tc; // increment token count

} // Found Delimiter
if (*(c++) == ’\0’) break; // exit AFTER ’\0’, not on.

}
if (parsed != NULL) *parsed = list; // the list we made
if (len != NULL) *len = tc; // the final token count

}
void freesplit(char ***parsed, int *strings)
{
// Sanity checks
if (parsed == NULL || strings == NULL) return;
// Loop over the strings
for (int i = 0; i < *strings; ++i)
{
// free the small arrays (the strings)
free((*parsed)[i]);

}
// Free the big array
free(*parsed);
*parsed = NULL; // prevent the usage of the freed memory
*strings = 0; // set the string count to be zero.

}

16

Notice in the above code how the hierarchical data structure is created. The
variable list is reallocated each time a new token is found and a pointer to
the newly allocated string is put into the newly extended array. Also note that
the caller is responsible for freeing both the strings in the list and the list itself,
as they are allocated dynamically. The function freesplit can be the memory
freeing complement to the above split function. The two functions above can
be called as in the following example:

int main(int argc, char **argv)
{
char *src = "Cut this string into pieces by spaces and the letter ’i’.";
char *delim = " i";
char **words;
int wordcount;
split(src, delim, &words, &wordcount);
for (int w = 0; w < wordcount; ++w)
printf("word[%d] = \"%s\"\n", w, words[w]);

freesplit(&words, &wordcount);
return 0;

}

4.3 Pointers to Nowhere: Handles

4.4 Back to Kindergarten: Pointer Arithmetic

4.5 Data, Data Everywhere: Pointers to Structs

5 Memory Management

5.1 The usual suspects: malloc and free

Dynamic memory allocation is a very important concept in C. This section is a
work in progress.

17

5.2 Even More Fun With Strings: String Functions

strlen size t strlen(const char *str)
Returns a size t (typically an unsigned int) representing
how many characters are in the string, not including the NULL
byte. This will be zero if *str == ‘\0’.

strdup char *strdup(const char *str)
Returns a newly allocated copy of str.

strcpy char *strcpy(char *dest, const char *src)
Copies the string pointed to by src into the memory location
beginning at dest. Be careful, this does no size checking! Re-
turns dest.

strncpy char *strncpy(char *dest, const char *src, size t
len)
Copies at most len characters from the string pointed to by
src into the memory location beginning at dest. Returns
dest. This is preferred to strcpy, as it is much safer and
less overflow-prone.

5.3 Array Management: calloc, realloc, and the mem*

Family

18

